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Abstract

This research explores ways of combining four distinct bounds for the mean error in an auditing population. Two com-
peting objectives for a bound are to be close to the true mean being estimated and to be reliable: not less than the true mean
in more than 5% of estimations. The optimal combination should provide the best balance of these competing objectives.
Estimating the mean error by a single approach is difficult because typically most accounts have no error and the distri-
bution of the errors among those that do is discontinuous and highly skewed. This study reveals that the weights in the
optimal combination are not constant but depend on the characteristic of the population being estimated. The optimally
combined bound is only 7% smaller overall than the best of the constituents. However, while the best of the constituents
fails in 50% of most challenging populations, the optimal combination never fails.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The purpose of the research in this paper is to
explore ways of combining four distinct approaches
to estimating the mean error in an auditing popula-
tion. The problem of estimating the mean error in
an auditing population, in which most items have
no error, has been the subject of much research over
the last 40 years. The problem which has been
referred to as the ‘‘zeros problem’’ has been made
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even more difficult to solve because of the highly
skewed distribution of the errors among those line
items that do indeed contain an error. The ‘‘zeros
problem’’ occurs in areas other than auditing.
Applied statisticians encounter a similar estimation
dilemma in medicine, environmental science, and
meteorology, for example. For the remainder of this
introductory section and the section on motivation
for the research, terms and references specific to
auditing and accounting will be made. Detailed
explanations of these terms along with illustrative
examples will be dealt with in Section 3 where we
believe they most naturally fit into the narrative.

To determine the accuracy of a firm’s financial
statements, auditors typically use the information
.
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from a sample of account balances to construct
an upper confidence bound for the total error
amount in the population. Early attempts to form
these upper confidence bounds employed classical
methods based on simple Normal theory. The
bounds were constructed from simple random sam-
pling and stratified random sampling of individual
accounts. But the bounds performed poorly because
of the peculiar distribution of errors found in
accounting populations.

Subsequent proposals to construct the upper con-
fidence bounds were based on a more efficient sam-
pling method, called dollar unit sampling (DUS),
in which the accounting population is viewed as a
collection of dollar units as opposed to individual
accounts. Methods that use DUS include the Strin-
ger bound (1963), Grimlund and Felix’s Modified
Moment bound (1987), Bickel’s Bootstrap bound
(1992), and Rohrbach’s Variance Augmented bound
(1993). The research in this paper will focus on these
four methods.

Other noteworthy bounds, based on DUS, but
not included in this research are the Load and
Spread (Leslie et al., 1976), the Multinomial (Neter
et al., 1978), the Bayesian Normal (Menzefricke and
Smieliauskas, 1984), the Modified Cox and Snell
(Godfrey and Neter, 1984; Neter and Godfrey,
1985), and the Multinomial Dirichlet (Tsui et al.,
1985).

2. Motivation for the research

Although some methods, such as the Modified
Moment bound and the Variance Augmented
bound, have proven to be superior to others in lim-
ited groups of populations, none of them is entirely
satisfactory. A bound that combines the leading con-
tenders, however, might provide a solution to the
‘‘zeroes’’ problem. The challenge will be to deter-
mine the best way of combining the methods, i.e.
the relative weights.
Table 1
Illustration of dollar unit sampling

Line item Item book value Cumulative book value Rando

Apex $70 $70 25
Bonds $30 $100
Cars $40 $140 103
Duds $100 $240 141, 2
Everlast $50 $290
Foxtrot $10 $300
Combining existing methods to provide a bound
that is superior to the constituents is based on a
tried and proven concept. Dworin and Grimlund
(1984) employed this strategy in their development
of the moment bound. Clayton (1994) also used it
in his study on the Hoeffding and bootstrap bounds.
The combination idea has extended into other areas
of business research such as forecasting. Examples
can be seen in the works of Clemen and Winkler
(1986), Winkler and Makridakis (1983), Makridakis
and Winkler (1983), Newbold and Granger (1974),
and others. Even in a completely different field such
as medicine, the best known treatment of life threat-
ening illnesses rely on a ‘‘cocktail’’ of a variety of
drugs.

3. Description of the bounds

3.1. Dollar unit sampling

We first present a detailed example of dollar unit
sampling and an explanation of the various kinds of
errors to provide a contextual framework for the
description of the bounds. The example is taken
from Clayton (1994). Imagine there exists a com-
pany with a total of six clients, to whom the com-
pany extends credit for services rendered. To track
the amount each client owes, the company main-
tains a list, as shown in Table 1, of each client’s bal-
ance called the book value. The list is referred to as
accounts receivable and each balance, an account
receivable or line item. When the company hires
an auditor to verify the balances and to make cor-
rections whenever errors are found, the auditor
reports an audit value for each client’s balance rep-
resenting the true amount owed. Examples of errors
that might be found are listed in the last column of
Table 1. The table also shows the audit values as
well as cumulative (running) total of the accounts.
As will be shown shortly, the cumulative total is
important in the sampling process.
m numbers Item audit value Item error (book–audit)

$63 $7 (overstated)
$30 $0 (no error)
$45 �$5 (understated)

40 $0 $100 (overstated)
$50 $0 (no error)
$10 $0 (no error)
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The sample unit in dollar unit sampling is an indi-
vidual dollar rather than an account balance or line
item. Once an auditor selects a sample dollar, he or
she will identify the line item to which the sample
dollar belongs and include that account receivable
in the audit. To obtain a random sample of, say, four
dollar units from the population of 300 dollar units
(given by the cumulative book value), the auditor
generates four random numbers between 1 and
300. Suppose the first random number is 25. Then
the corresponding sampled dollar will be the 25th
in order of the list and the Apex account will be
audited since it contains the 25th dollar. If the sec-
ond random number is 103, then the Cars account
will also be audited since it contains the 103rd dollar.
Finally, the Duds account will be included in the
audit if the third and fourth random numbers hap-
pen to be 141 and 240, respectively. Notice here that
two sample dollars come from the same line item.
When this occurs the information gleaned from the
two sample dollars is treated in the same way as if
it were obtained from separate line items.

Having two or more sample dollars from the
same line item is common in sampling with proba-
bility proportional to size of which dollar unit sam-
pling is a variant. The phenomenon is appealing to
auditors because the larger line items, containing
more information than smaller ones, are more likely
to be ‘‘hooked’’ into the auditing process.

Now suppose upon auditing the Apex account
the auditor determines that its correct (audit) value
is $63. Then there would exist a $7 overstatement
(OS) error in the book value since $70 � $63 = $7.
The $7 error would be prorated to each dollar in
the Apex account to give what is called a taint of
7/70 or $.10. Thus, every dollar in this account
(including the one sampled) would be regarded to
possess an OS taint of $.10. If the auditor finds
the audit value of the Cars account to be $45, then
there would be, on the other hand, an understate-
ment (US) error of $5 ($40 � $45) and such US taint
associated with every dollar in the Cars account
would be �5/40 or �$.125.

In special situations, most commonly caused by
failure to delete an account receivable that is fully
paid up, the OS error amount equals the book value
amount. This leads to an OS taint of 100% for each
dollar unit in that account. This is the situation
exemplified in Table 1 by the Duds account whose
audit value is $0. For each dollar in this listed book
value the taint is 100/100 = $1. Thus, the random
sample of four dollar units taken from the popula-
tion of six line item accounts yields the taints $.10,
�$.125, $1, and $1. If one makes the reasonable
assumption that no book or audit value is negative,
then OS taints will lie in the closed interval between
0 and 1. In contrast, US taints may have absolute
values greater than 1.

An auditor can obtain the total error amount in a
population of accounts by multiplying the popula-
tion mean taint (say, l) by the known population
book amount (say, B). Thus, an upper bound on
the population error is obtained from the product
B * l where l is an upper bound for the population
mean taint.

3.2. Performance measures

A bound that is correct should be greater than the
population mean it is attempting to estimate. How-
ever, the bound’s value should be as close as possible
to the true population mean. This property is
referred to as its tightness. A bound that far exceeds
the true population mean is considered to be conser-
vative and is undesirable because it may lead to
costly over-auditing. We measure a bound’s tight-
ness with its mean value over repeated applications.

A competing criterion for a desirable bound is its
reliability as measured by the coverage. This is the
percentage of times the bound is greater than the
population mean. Bounds typically are designed to
have 95% coverage, referred to as the nominal level.
There is a natural trade-off between reliability and
tightness. Some bounds, such as Bickel’s (1992)
bootstrap, often achieve tightness at the expense
of reliability; their coverage is typically below the
nominal level. Other bounds, such as the Stringer
(1963), achieve reliability at the expense of tightness.
Their coverages will be typically above nominal but
they are often too conservative.

A third criterion is a bound’s stability over
repeated applications. This is measured by the stan-
dard deviation over repeated replications. A desir-
able bound is one that provides coverage close to
the nominal (95%) level, while possessing tightness
(i.e. the bound mean should be close to the popula-
tion mean, and the standard deviation should be
small).

3.3. Variance augmented bound

Of the four bounds included in this study,
the Variance Augmented bound (AVE), developed
by Rohrbach (1993), performs the best under
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varied conditions. A brief description of the bound
follows.

If a random sample of n taints is obtained from
the population of dollar unit taints, the 100(1 � a)%
large-sample upper bound for the mean taint is given
by

l1 ¼ t þ ½zð1� aÞ=pn�s; ð1Þ

where t is the sample mean taint, s, the sample stan-
dard deviation of the taints, and z(1 � a), the
100(1 � a) percentile of the standard normal distri-
bution. To derive an expression for the augmented
variance, Rohrbach (1993) preferred to express the
bound in terms of the complement of the taints,
wi, which also represents the ratio of the audit to
book value of the dollars in the ith line item. Thus,
we have

l1 ¼ 1� wþ ½zð1� aÞ=pn�s; ð2Þ

where s2 ¼ ½1=ðn� 1Þ�
Pnðwi � wÞ2 and w ¼ ð1=nÞPnwi. Rohrbach (1993) showed that the variance

expression for s2 is equivalent to

s2 ¼ ð1=nÞ
Xn

w2
i � ½2=ðnðn� 1ÞÞ�

Xn Xn

wiwj. ð3Þ

By inserting an augmentation factor, 2.7/n, deter-
mined experimentally, this variance becomes

s2 ¼ ð1=nÞ
Xn

w2
i � ½ð2� 2:7=nÞ=ðnðn� 1ÞÞ�

�
Xn Xn

wiwj. ð4Þ

Thus, the AVE bound is computed by (2) using the
variance expression in (4).
3.4. Modified moment (MM) bound

The MM bound is much more complicated than
the AVE bound and will require extensive explana-
tions that are best obtained from the references
(Dworin and Grimlund, 1984, 1986). A very brief
outline is given here. The first step in computing
the MM bound is to determine the mean nonzero

sample taint t and a hypothetical taint t* =
0.81[1 � 0.667 tanh(10abs(t))][1 + 0.667 tanh(n/10)].
The hypothetical taint is a heuristic needed to intro-
duce a degree of conservatism into the bound. These
two sample statistics are then used to estimate the
mean, variance and third central moment of the
sampling distribution of mean error tainting which
is approximated by a gamma distribution. Estima-
tion of the three moments of the gamma distribu-
tion involves the introduction of a number of
auxiliary distributions and their central and noncen-
tral moments. Denoting the three central moments
of the gamma distribution by UC1, UC2, and UC3,
the parameters of the gamma are given by A =
4(UC2)3/(UC3)2; B = 0.5[(UC3)/(UC2)]; and G =
UC1 � 2(UC2)2/(UC3). Then MM is computed by

l2 ¼ Gþ AB½1þ zð1� aÞ=pð9AÞ � 1=ð9AÞ�3. ð5Þ
3.5. Bickel Bootstrap bound

Bickel’s bound is computed by a modified boot-
strap procedure. Assume that an initial sample (size
n) of taints is taken from the population of dollar
units. This sample may contain m nonzero taints with
the remaining n � m being zero taints. The first step
in the usual procedure would be to repeatedly draw
random samples, also of size n, with replacement,
from the initial sample of taints to obtain 1000 or
more new samples. These new samples obtained in
this way, treating the initial sample as if it were a pop-
ulation, are called bootstrap samples. Such boot-
strap samples would contain zero and nonzero
taints whose distribution would be expected to
approximate, to high degree of accuracy, the real
population tainting distribution.

The modification proposed by Bickel (1992) is to
first consider the m*, the number of nonzero taints
in a bootstrap sample of size n, to have a binomial
distribution with parameters n and p(m, 1 � a)
rather than parameters n and m/n as would be dic-
tated by the regular bootstrap. Here, the expression
p(m, 1 � a) represents the (1 � a) upper bound on
m/n (=p), the proportion of nonzero taints in the
initial sample. The second part of the modification
is to then generate the bootstrap samples (size m*)
of nonzero taints by resampling, with replacement,
only the nonzero taints in the initial sample.

Since only the nonzero taints contribute to the
sum of taints in a sample, one can approximate
the probability

P
Xn

tk P nl� nt
� �

by P �
Xm�

v�k P npðm;1� aÞv� nt

" #
;

where tk, with mean t, represents a taint in the initial
sample; vk, with mean v, represents a nonzero taint
in the initial sample; and v�k , represents a nonzero
taint in a bootstrap sample (size m*). From the
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bootstrap process one may solve P � ½
Pm�v�k P

npðm; 1� aÞv� nt� ¼ 1� a, with the a quantile, ta,
to obtain the 1 � a upper bound for the mean taint
given by

l ¼ t þ ta.

However, a reasonable and less computer-intensive
approach to obtain a bound when m > 1, is to use
the normal approximation to the bootstrap distribu-
tion of

Pm�v�k . Noting the expected value by

E�
Xm�

v�k ¼ npðm; 1� aÞv;

and the variance by

Var�
Xm�

v�k ¼ nfpðm; 1� aÞs2 þ pðm; 1� aÞ
� ½1� pðm; 1� aÞ�v2g;

where s2 ¼ ½1=ðm� 1Þ�
Pmðvk � vÞ2, one obtains the

following for the approximate bound:

l3 ¼ t þ ½zð1� aÞ=pn�fpðm; 1� aÞ
� ½s2 þ ð1� pðm; 1� aÞÞv2�g1=2. ð6Þ

This bound is asymptotically correct because as
n!1, p(m, 1 � a)! p, s2! Var(V), and v!
E(V) where V is a random variable denoting the
nonzero taints in the population.

3.6. Stringer bound

Computation of the Stringer (1963) bound
starts out by assuming conservatively that all the
m observed errors in a dollar unit sample are
100% overstatements (i.e. all taints are equal to
+1). If this were the case then the bound would be
given by p(1 � a;n,m) which, a slight modification
of the notation in Section 3.5, represents the 1 � a
upper confidence bound for the population propor-
tion, p, based on the binomial distribution, when
m errors are found in a random sample of n. The
next step is to adjust this bound for taints that are
less than 1. If the m observed nonzero taints
are t1 P t2 P � � �P tm then the Stringer bound,
for OS errors only, can be expressed as

l4 ¼ pð1� a; n;mÞ �
Xm

ðk¼1Þ
½pð1� a; n; kÞ

� pð1� a; n; k � 1Þ�ð1� tkÞ.

The bound however is usually expressed in the fol-
lowing equivalent form:
l4 ¼ pð1� a; n; 0Þ þ
Xm

ðk¼1Þ
½pð1� a; n; kÞ

� pð1� a; n; k � 1Þ�tk. ð7Þ

When dealing with a sample containing negative
as well as positive taints, a procedure known as the
Stringer offset method is employed. The Stringer off-
set method reduces the initial Stringer bound for OS
errors only, by subtracting the projected US errors
inferred from the observed sample. For example,
if, in addition to the m positive taints there are w

negative taints with absolute values, g1 P g2

P � � � gw, then the Stringer offset bound (SO) is
given by SO ¼ l4 �

Pwgk=n.

3.7. Comparison among the bounds

The MM and AVE bounds have been studied
and compared by various authors including Rohr-
bach (1993) and Clayton (1995). Both bounds have
been shown to perform equally well in regular and
extreme audit situations, providing a tight bound
that is reliable most times. However, they do not
always give the tightest bound or the most reliable
one in all settings. The Stringer bound is very reli-
able, always giving coverage above the nominal
level, but achieves this reliability at the expense of
being too conservative. At the other extreme we
have the Bickel bound, which is the tightest among
the four bounds but has shown, in simulation stud-
ies, to be unreliable with coverages well below nom-
inal in many settings.

The complementary property of the four bounds
is the reason for their inclusion in this study. The
desired outcome is that the optimal combination
among these bounds will provide a useful tool for
evaluating populations with skewed distributions.
4. Methodology

4.1. Tainting distributions

Based on the description of the empirical distri-
bution of dollar unit taints in accounts receivable
and inventory populations reported by Neter et al.
(1985), the tainting distribution model for the dollar
units was taken as a mixture of four components.
These were (a) a continuous distribution for abso-
lute US taints, (b) a mass at zero, (c) a separate con-
tinuous distribution truncated at 1.0 for OS taints
under 100%, and (d) a mass at 1.0 for 100% OS
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taints. Fig. 1 illustrates an example of the tainting
distribution model. The highly skewed continuous
distributions for absolute US and non-100% OS
taints were aptly described by v2 distributions
(Dworin and Grimlund, 1984). A variety of tainting
distributions were generated by manipulating the
total dollar unit error rate, the conditional propor-
tions of taints that were OS, US, and 100% OS,
and the means of the v2 distributions.

4.2. Simulation design

For this investigation 48 study populations were
simulated. To generate these study populations, first
the unconditional total error rate (p) was varied
between 5% and 10%. This represented a low and
a mid-range value for rates that typically vary
between 3% and 30%. Next the conditional propor-
tion of 100% OS errors was varied among 0%, 10%,
20%, and 40%. For US errors, the conditional pro-
portion was varied among 0%, 10%, and 20%. In
any given study population, the conditional propor-
tion of pure OS errors was taken as the remainder
after the 100% OS and US error rates were deter-
mined. For example, with 10% of the errors being
US and 20% of them being 100% OS, the propor-
tion of pure OS would be 70%. Finally, two models
for the means of the distributions for OS and US
were employed. The first model took the means to
be 0.3 and 0.1, respectively, and the second model
set the mean values at 0.1 and 0.1, respectively.
Thus, the 48 study populations were a result of
2 · 4 · 3 · 2 combinations.
Distribution o
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For each of the 48 study populations, two sample
sizes, 50 of 100, were investigated. From each sam-
ple the four bounds at the 95% confidence level were
computed 1000 times and the values stored for the
combination phase in the simulation.

4.3. Combining the bounds

Enumeration of the possible weighting combina-
tions of the bounds was accomplished in the follow-
ing manner: Step 1, specify a fixed total number (e.g.
30) of sub-units to be made available for splitting up
among the four bounds. Step 2, allocate a certain
number of sub-units to each of the bounds so that
the sum of the allocated sub-units always equals
the pre-specified total. For example, 5 + 6 + 3 +
16 = 30. Actual allocation of sub-units was done
systematically as described below in Section 4.4.
Step 3, determine the weight associated with each
bound by dividing the allocated number of sub-units
by the pre-specified total. For example, wt1 = 5/30 =
0.167, wt2 = 6/30 = 0.200, wt3 = 3/30 = 0.100 and
wt4 = 16/30 = 0.533. For every possible combina-
tion of the four bounds, the weights must sum
to unity. For example, 0.167 + 0.200 + 0.100 +
0.533 = 1.

In deciding on the total number of sub-units we
had to be aware that the larger the number, the
greater will be the precision in allocation of weights
to the bounds. But the price paid for increased pre-
cision is an increase in CPU requirements. So a
compromise between precision and CPU demands
had to be reached in specifying the total number
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of sub-units. We chose 30 sub-units in this study
because it yielded an acceptable level of precision
without an overwhelming burden on our CPU.

4.4. Data gathering

The choice of a weighting scheme with 30 sub-
units for combining the four bounds yielded a total
of 5456 possible combinations. The total can be
derived in the following way: Allocating 30 sub-
units to an arbitrary first bound, there is only 1
way for allocating the remaining (zero) sub-units.
Then allocating 29 sub-units to this arbitrary first
bound, there are three ways of allocating the
remaining sub-unit. Next, allocating 28 sub-units
to this arbitrary first bound, there are six ways of
allocating the remaining sub-units. Continuing in
this fashion the number of combinations follows a
‘‘triangle’’ series (1, 3, 6, 10, 15, . . . , 496) with 31
terms. The sum of this triangle series is given by

the binomial coefficient
33
30

� �
which equals (33 ·

32 · 31)/(3 · 2) and results in the total 5456.

For each of the possible 5456 combinations we
computed the mean, standard deviation, and cover-
age of the combined bound over 1000 replications.
This was done for each of the 48 study populations
and for each sample size. Through this process, by
having zero weights on three bounds and unit
weight on one bound, the performance measures
of the four constituent bounds in every study popu-
lation were automatically generated. This made it
possible to compare the performance among vari-
ous combinations as well as the constituents.
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Fig. 2. Coverage vs. tightness of bound for a population with 10% erro
conditional errors are understatements).
Because of the trade-off between the tightness of
a bound, as measured by its mean, and its reliability,
as measured by its coverage, it is instructive to visu-
alize an ‘‘efficient frontier’’ over the range encom-
passed by all possible combinations of the bounds
(see left curved edge in Fig. 2). Points on the efficient
frontier will represent combinations for which no
other combinations can be identified to provide a
tighter bound for a given coverage level. The opti-
mal combination, under our chosen weighting
scheme, will logically correspond to a point on the
efficient frontier. It will be the combination with
the smallest mean at exactly 95% coverage. We
determined the optimal combination for each of
the 48 study populations and two sample sizes.

5. Simulation results

5.1. Optimal bound weights

Table 2 shows the percentage of the 48 study
populations, investigated with sample sizes 50 and
100, for which each bound achieved a certain
weighting in the optimal combination. One can see
that the Stringer bound and Moment bound
achieved a weighting less than 0.10 in nearly 90%
of the populations while never appearing in any
optimal combination with above 50% of the weight.
In contrast, the Bickel and AVE bounds achieve low
weights under 0.30 in about 40% of the study popu-
lations and high weights above 0.70 in over 30% of
the study populations. Clearly the optimal combina-
tion in a wide variety of settings is dominated by the
Bickel and AVE bounds.
2 0.03 0.04
ound Error

r rate (80% of conditional errors are overstatements and 20% of



Table 2
Percentage of study populations with varying levels of assigned
weights of constituent bounds in the optimal combination

Wt. class Percentage of the study populations

Str Bkl Mom Ave

<0.10 88.5 38.5 89.6 27.1
0.10–0.30 9.4 1.0 9.4 16.7
0.30–0.50 2.1 9.4 1.0 14.6
0.50–0.70 0.0 17.7 0.0 5.2
0.70–0.90 0.0 19.8 0.0 14.6
0.90–1.00 0.0 13.5 0.0 21.9

Total % 100.0 100.0 100.0 100.0
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To illustrate the particular type of accounting
population that is favored by the dominant bounds
in the optimal combination, Table 3 shows the dis-
tribution of mean bound weights among popula-
tions having only OS errors, high and low
incidents of US errors, as well as low and high inci-
dents of 100% OS errors. We observe that for pop-
ulations having only regular OS errors, the optimal
combination is practically a Bickel bound capturing
over 80% of the weights. For populations with low
or high incidents of US errors the Bickel and AVE
bounds are roughly equally weighted when the small
sample size is used but the AVE gains prominence
when the larger sample size is used. An interesting
reversal of weighting occurs in the presence of
100% OS errors. At low levels of 100% OS errors,
the Bickel dominates with between 76% and 67%
Table 3
Mean weights in the optimal combinations for various types of
populations

Pop. types Mean weights

Str Bkl Mom Ave

n = 50

All OS 0.000 0.875 0.017 0.108
US = 20% 0.021 0.500 0.069 0.410
US 6 10% 0.020 0.454 0.058 0.468
100 OS 6 10% 0.000 0.763 0.115 0.122
100 OS P 20% 0.037 0.226 0.018 0.718

Averages 0.016 0.564 0.055 0.365

n = 100

All OS 0.000 0.817 0.017 0.167
US = 20% 0.081 0.381 0.021 0.517
US 6 10% 0.039 0.350 0.015 0.595
100 OS 6 10% 0.005 0.667 0.032 0.297
100 OS P 20% 0.096 0.107 0.006 0.792

Averages 0.044 0.464 0.018 0.473
weighting (for sample size 50 and 100, respectively).
But at higher levels of 100% OS, the AVE domi-
nates with mean weights between 72% and 79%,
respectively.

5.2. Shortcomings of optimal weights

Despite the dominance of the Bickel and AVE
bounds in the optimal weightings, it is clear from
Table 3 that the optimal weighting was far from
being constant over the various types of accounting
populations under investigation. This lack of con-
stancy presents a problem in the usefulness of the
optimal bound. The weights are dependent on char-
acteristics of the population being audited and one
cannot reasonably assume that a practitioner will
always have full knowledge of the characteristics
of the accounting population he or she is working
with. Having a fixed optimal weighting would have
been ideal. With a fixed set of weights for the con-
stituent bounds it is easy to program a computer
to estimate the mean population error. Regardless
of the nature of the errors in the sample, the ulti-
mate bound would be computed in the same way.
At the same time, the overarching goal is for the
resulting combined bound to always achieve the
nominal level of reliability (e.g. 95%) while being
as close as possible to the true population mean
error. This goal is attained by the optimal bound.

One possible solution to having constant weights
would be to use the average values of the mean
weights for the bounds over all the study popula-
tions. Unfortunately the combined bound generated
by these average weights proved to be quite unreli-
able achieving as low as 90% coverage for some
populations. In addition, for most of the popula-
tions in which this combined bound proved unreli-
able, its mean value exceeded that of the AVE
bound. For these reasons, the combined bound gen-
erated by the average of the mean optimal weights
could not be considered a viable solution.

5.3. Sub-optimal compromise

Faced with the dilemma of either having an opti-
mal bound whose weights depended on population
characteristics or a combined bound with coverage
and tightness problems, we decided on a compro-
mise solution. We manually searched for the unique
combination that was not necessarily optimal for
any study population but which gave a combined
bound with the smallest mean value and which
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could attain at least 95% coverage in every study
population. This bound, though not globally opti-
mal, represents the best combination that can guar-
antee nominal reliability without the practitioner
having to apply knowledge about the population.
In every setting the bound is calculated with prede-
termined weights. We named this combined bound
appropriately the Global95. In Tables 4 and 5, the
properties of the Global95 are compared with
the properties of the optimal combination and the
AVE bound which is the best of the constituent
Table 4
Coverage performance, in various types of populations, for the optima

Mean coverage values

Optimal Ave Globa

n = 50

All OS 95.5 100.0 100.0
US = 20% 96.4 99.1 99.1
US 6 10% 96.3 99.1 99.4
100 OS 6 10% 95.7 100.0 99.9
100 OS P 20% 96.9 98.2 98.7

Averages 96.3 99.1 99.3

n = 100

All OS 96.2 99.6 99.9
US = 20% 95.7 96.9 98.2
US 6 10% 95.8 97.5 98.6
100 OS 6 10% 95.7 99.1 99.4
100 OS P 20% 95.8 95.5 97.5

Averages 95.8 97.3 98.5

Table 5
Means and standard deviations, in various types of populations, for th

Mean

Optimal Ave Globa

n = 50

All OS 0.0471 0.0604 0.0680
US = 20% 0.0650 0.0698 0.0796
US 6 10% 0.0697 0.0747 0.0858
100 OS 6 10% 0.0530 0.0621 0.0718
100 OS P 20% 0.0843 0.0843 0.0963

Averages 0.0682 0.0731 0.0837

n = 100

All OS 0.0357 0.0409 0.0463
US = 20% 0.0494 0.0498 0.0562
US 6 10% 0.0534 0.0545 0.0621
100 OS 6 10% 0.0397 0.0425 0.0495
100 OS P 20% 0.0651 0.0637 0.0713

Averages 0.0521 0.0530 0.0601
bounds. The purpose of the comparison is to illus-
trate how much of the optimal properties are given
up in the compromise while still improving on the
performance of the best constituent.

Table 4 compares the coverage performance of
the Global95 with that of the optimal combination
and the AVE bound. We see that, with coverages
averaging above 99% for sample size 50 and over
98% for sample size 100, the Global95 is more con-
servative than both the optimal and AVE. Note
how much closer to the nominal 95% is the optimal
l, AVE, and Global95 bounds

Percentage of coverages below nominal 95% level

l95 Optimal Ave Global95

0 0 0
0 12.5 0
0 14.3 0
0 0 0
0 25.0 0

0 0 0
0 37.5 0
0 25.0 0
0 5.0 0
0 50.0 0

e optimal, AVE, and Global95 bounds

Standard deviation

l95 Optimal Ave Global95

0.0225 0.0153 0.0184
0.0304 0.0246 0.0283
0.0305 0.0252 0.0287
0.0276 0.0194 0.0234
0.0341 0.0313 0.0346

0.0305 0.0250 0.0286

0.0133 0.0107 0.0121
0.0185 0.0171 0.0185
0.0187 0.0172 0.0187
0.0160 0.0135 0.0153
0.0218 0.0213 0.0225

0.0187 0.0172 0.0186
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coverage with average values of 96.3% and 95.8%,
respectively, for sample sizes 50 and 100. On the
other hand, as a result of its definition, the Global95
does not exhibit the reliability problems that the
AVE clearly has. In none of the study populations
is the coverage of the Global95 compromise bound
below the nominal 95%. In contrast, using sample
size 50, the AVE bound shows below nominal cov-
erage in 25% of the populations with high incidents
of 100% OS errors. When the larger sample size is
employed, the AVE’s coverage is below nominal in
as many as 37% of the populations with high US
errors and 50% of populations with high 100% OS
errors.

Table 5 compares the means and standard devia-
tions of the Global95 compromise with those of the
optimal and AVE bounds. As a reminder, it is desir-
able to have small values for the mean and standard
deviation without the bound becoming unreliable by
having below nominal coverage. As one would
expect, the optimal bound is the smallest in nearly
every setting. The exception is for high incidents of
100% OS errors when the AVE is smaller than the
optimal (but becomes unreliable to achieve this).
On the other hand, the Global95 is clearly less tight
than the AVE in every setting in order to maintain its
reliability. The consistency of the Global95, sup-
ported by its relatively smaller standard deviation,
is better than that of the optimal bound in most
types of populations. The AVE with the smallest
standard deviation, being a ‘‘pure’’ bound instead
of a combination, is the most consistent among the
three bounds.

6. Summary and conclusions

This study has shown modest achievement in
combining the two leading methods, modified
moment (MM) and variance augmented (AVE),
for evaluating audit populations, with the conserva-
tive Stringer bound and the aggressive, but unreli-
able, Bickel bound. The optimal weights, though
not constant over the wide cross-section of study
populations, gave a combined bound that domi-
nates the best among the constituent bounds. Com-
pared to the variance augmented bound, the
combined bound is only 7% smaller, on average,
over all the study populations. However, the major
advantage of the optimal combined bound lies in its
reliability. Whereas the variance augmented bound
gives below nominal coverage in as many as half
of the study populations that possess a high propor-
tion of 100% overstatement (OS) errors, the optimal
combined bound always gives coverage that is
above, yet close to, the nominal level.

One short-coming of the optimal weights deve-
loped in this study is that they depend on popula-
tion characteristics which will not always be known
by the practitioner. Nevertheless, in some cases, the
practitioner will be familiar with the population
characteristics if he or she has past experience with
auditing accounts from a given client. Also, some
general knowledge of the error distribution based
on the industry from which the accounts are taken,
and on the accounting category, is available in the
literature (Neter et al., 1985; Ham et al., 1985). An
attempt to determine a reliable combined bound
whose weights are fixed, and thus independent of
population characteristics, resulted in a bound
(the ‘‘Global95’’) that was not tight. The overall
mean of this compromise bound was as much as
23% higher than the optimal using samples of
size 50 and 16% higher using samples of size 100.
The trade-off for having constant weights and guar-
anteed reliability appears rather expensive. In a
future investigation, it would be useful to con-
tinue the search of weights that still produce a reli-
able bound but which rely entirely on sample
information.
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