Galerie Fractale de Buttercup par L'intermédiaire de la Newton-Raphson

Thumbnail Equation Interval Downloadable Resolution Comment Download

f(x) = x3 - 1

Re[-3,3]
Im[-3,3]

1200x1200 pixels 11 Iterations/pixel.  This was the first fractal that I constructed on Feb 11, 2004 Download

f(x) = x3 - 1

Re[-.5,1]
Im[0,1.5]
1200x1200 pixels 20 Iterations/pixel Download
f(x)=x6+3 Re[.3916, 1.05833]
Im[1.03351, 1.47795]
2700x1800 pixels 30 Iterations/pixel Download
f(x) = x3+x2+x+1-sin(2x) Re[18Pi/5,23Pi/5]
Im[2Pi/3, 4Pi/3]
2700x1800 pixels 30 Interations/pixel Download
x = t - sin(t)
y = 1 - cos(t)
Re[17Pi/8, 25Pi/8]
Im[-Pi/3, Pi/3]
3600x2400 pixels 20 Iterations/pixel Download
x = r cos(t)
y = r sin(t)
Re[5Pi/32,13Pi/32]
Im[-Pi/6, Pi/6]
3600x2700 pixels 20 Iterations/pixel Download

f(x) = x5 - 1

Re[.5,1]
Im[.3,.8]
1200x1200 pixels
2400x2400 pixels
25 Iterations/pixel Download MedRes
Download HiRes
x = x2 + c Re[-2.1,.6]
Im[-1.35,1.35]
1200x1200 pixels
2400x2400 pixels
Mandelbrot.  Not Newton-Raphson Convergence.  100 Iterations/pixel DownloadMedRes
Download HiRes
x = x2 + c Re[-.775,.-.725]
Im[.05,.10]
600x600 pixels Hyper-detail of above fractal.  100 Iterations/pixel Download
x = x2 + c Re[0.18, 0.50]
Im[-0.62, -0.30]
2400x2400 pixels Hyper-detail of Mandelbrot fractal.  100 Iterations/pixel Download
x = x2 + c Re[-2.05, -1.34]
  Im[-.08875, .08875]
2400x600 pixels Hyper-detail of Mandelbrot tail.  75 Iterations/pixel Download
x = x2 + c Re[-2.1,.6]
Im[-1.35,1.35]
1200x1200 pixels Mandelbrot.  Not Newton-Raphson Convergence.  100 Iterations/pixel Download
f(x)=sin(1.25x)/x Re[2Pi,5Pi]
Im[Pi,3Pi]
2700x1800 Pixels 25 Iterations/Pixel Download

f(x) = x4 - 1

Re[1,2]
Im[1,2]
1200x1200 pixels 15 Iterations/pixel Download

f(x) = x3 - 1

Re[-.5,1]
Im[0,1.5]

1200x1200 pixels

11 Iterations/Pixel.  Close up of the the first fractal I constructed. Download
f(x) = x4 + x3 + 2x2 + .2x + 1 Re[-1.1. -.1]
Im[1.9, 1.9]
1200x1200 Pixels
2400x2400 Pixels
30 Iterations/Pixel Download MedRes
Download HiRes
f(x)=(x+1)5 Re[2,5]
Im[2,4]
4500x3000 Pixels 25 Iterations/Pixel Download
f(x)=exp(-x)sin(x) Re[-6Pi,0]
Im[-2Pi,2Pi] 
(Rotated)
1800x2700 Pixels 25 Iterations/Pixel Download
f(x) = x8 + 2 Re[1.1775, 1.2875]
Im[1.15, 1.26]
2880x1920 Pixels 100 Iterations/Pixel Download
f(x) = 2x4 + 3x3 + x2 + x + 1 Re[1.75. 3.25]
Im[-.75, .75]
1200x1200 Pixels
2400x2400 Pixels
30 Iterations/Pixel Download MedRes
Download HiRes
x = x2 + c Re[-2.6,-1.85 ]
Im[-0.25, 0.25]
6480 x 1440 Pixels 40 Iterations/Pixel (in 3 Dimensions) Download
f(x)=sin(1.25x)/x Re[2Pi,5Pi]
Im[Pi,3Pi]
1650x508 Pixels 25 Iterations/Pixel (in 3 Dimensions) Downloads
f(x)=sin(x2) Re[-1.5,0]
Im[-1,0]
1650x508 Pixels 25 Iterations/Pixel Downloads
f(x)=sin(1/x) Re[-1.5,1.5]
Im[-1,1]
1619x974 Pixels 25 Iterations/Pixel Downloads
f(x)=x3sin(x) Re[-1,0]
Im[-1/3,1/3]
1620x1216 Pixels 30 Iterations/Pixel Downloads
f(x)=e-xsin(x) Re[-3,3]
Im[-2,2]
1619x1216 Pixels 25 Iterations/Pixel Downloads
f(x)=sin(x)/x2 Re[-1,1]
Im[-2.5,-1.167]
1215x811 Pixels 25 Iterations/Pixel Downloads
f(x)=sin(x)/x2 Re[0,Pi]
Im[0,2Pi/3]
1216x811 Pixels 25 Iterations/Pixel Downloads
f(x)=sin(x)ex Re[0.1,1.0]
Im[0.45,1.05]
1024x544 Pixels 30 Iterations/Pixel Downloads
f(x)=x3+1 Re[-0.15,1.35]
Im[-0.53,0.47]
1920x1080 Pixels 20 Iterations/Pixel Downloads
f(x)=sin(x)ex Re[0,Pi/2]
Im[-Pi/6,Pi/6]
3600x1231 Pixels 20 Iterations/Pixel Downloads